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GNSS velocities, horizontal strain rates and
rate of Coulomb Failure Function

550 velocities of GNSS sites resulting from
standardized processing compliant with IGS/EUREF
Guidelines

Scattered velocities are converted to strain rates using
least squares collocation and at least 4 sites in the
neighbourhood of the computation point
Computation points are chosen as the center of those
85 Individual Seismogenic Sources (ISS) of DISS 3.2.0
of INGV which are sufficently well covered by GNSS
data

Resulting strain rate is projected onto the planes of
each selected ISS to comput a normal and tangential
strain rate

Coulomb stress rates on the selected ISS’s is
computed assuming plane stress rate: it is taken as an
indicator of the rate at which regional stress loads
known (ISS) faults.
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Are ISS faults optimally aligned to the regional

stress rate field of GPS?

Velocities are measured at points; strain rates are estimated for
an area covered by velocities

In the estimate of the strain rate at a point we need to include all
the neighboring velocities which define a similar strain rate
pattern

Example for ITISO96 (Isola del Gran Sasso): velocities in a radius of
80 km are maximizing the shear strain rate and define a coherent
(mostly) extensional regime. Hence we speak of regional
stress/strain rate.

Normally the eigenvectors of the stress rate from GNSS geodesy
agree in direction with both the Sh angles of the Italian stress
map (Montone and Mariucci 2016) and the strike of the ISS’s

In this sense we find that the ISS’s are optimally oriented to the
regional, GNSS inferred strain/stress rate field

Details in Mastrolembo and Caporali (BGTA 2017)
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Map of the CFF rate at 85 selected ISS’s |

The majority of the studied ISS has a positive rate

of CFF (takes stress from the regional field) at a
rate between 1 and 3 kPa/yr, assuming a friction
of 0.5

This means that it takes some 300 to 1000 years
to obtain a stress of ca 1MPa (10 bar), which is
close (in order of magnitude) to a typical stress
drop

This order of magnitude estimate however does
not take into account the stress transferred by
nearby earthquakes (to be discussed later)
Central Italy appears to have on average higher
CFF rates

Higher/lower CFF rate does NOT necessarily
mean higher/lower seismic hazard
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Highest CFF rate found in relatively deep
transtensive sources

>
ITISO94: Tocco da Casauria. This source is %ﬁ? T
associated with the 5-30 December 1456 ;
M=6 earthquakes (Fracassi and Valensise, Lk
2007); ITIS027 (Sulmona) is just south iR

ITISO52: San Giuliano di Puglia

ITISO53: Ripabottoni

They are both associated with the 2002
Mw 5.7 and 5.8 events at depth of 16-20

km. —

SE we find ITIS082 (Ascoli Satriano) and S A ey . i [
further South ITISO88 (Bisaccia) as yellow @ @s o o5




NE [taly

e CFF rateis lower than in
Central Italy

* The compressional eigenvector
is very well aligned to the strike
of the faults especially near the
tip of the indenter.
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Strain rate interpolated at

mso49 f ﬁ
the epicenter of the U@’ °

Amatrice M=6 24.08.2016 \%9 ;ga
event and Norcia M=6.5 \= >\
31.10.2016 event (both e[

ot yet included in DISS

<
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Norcia is estimated ca. 1
kPa/yr, relatively small

The activated faults
appear optimally oriented
to the regional
stress/strain rate



Compilation of events m>6 in Central Italy with known/assumed
parameters (DISS+CPTI): how do previous events transfer Coulomb
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12EQ24082016 Amatrice

9EQ30102016 Norcia



Coulomb stress pre and post the 2009 event
at 3 km depth The map shows the

state of Coulomb stress
in Central Italy before
and after the Aquila
event of 2009
(Paganica fault is n.25)
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The positive Coulomb
stress which is
released is at the
border between the
Paganica (25) and San
Pio delle Camere (1)
faults

High Coulomb stress
at the border
between Paganica
(n.25) and Montereale
(n.11)

100 100 -

80+ 80 -

Y (km)

60 - 60 [

40+

20

0_

=20

0 20 40 60 80 100 120 _ 0 20 40 60 80 100 120

Coulomb 3,3‘% ﬂ“g\) 2017 19:24:00 1997 _3.in oulomb 3 m\)ov 17 19:32:58 2009.in
Opt. normal faults Depth: 3.00'km' Friction™0.4 Spt normal faults Depth: g 00 km Fr?ctlon 0. 4%



Coulomb stress pre and post the 2009 event
at 3.5 km depth
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Coulomb stress pre and post the 2009 event
at 4 km depth

Coulomb stress change (bar) Coulomb stress change (bar)
T T T T T T 10 T T T T T T The map
180 [ 180 -
. | shows the
1eor vear state of
140 i 140 r Coulomb
120 - i+ o 14 stressin
. . Central Italy
J 100 12
2 . before and
f 80 0 £ w0 10 after the
> .
80 P el . Aquila event of
0 wol 2009 (Paganica
B b fault is n.25)
20 20
-6 -6
° . oy B At 4km depth there is
20 20t , the largest decrease of
0 20 40 60 80 100 120 0 0 210 4|o slo alo 160 150 e Coulomb stress

Coul b33%m 017 19:29:14 1997 _3i
%’p?n’ll'nonnal faults Depth 408 km 1Frit::ticun‘.‘alga 88{‘"25’}%%] fau“s%’gp}’hzﬂ 01kg 3%?3%9,0 i



Major active faults are described in the DISS database of INGV

Stress is accomodated by SW dipping normal faults, which are
optimally oriented to the regional stress rate field ca. N50E

(measurable with GNSS)

The regional field is complemented by a Coulomb field originating

from past earthquakes and mapped to optimally oriented faults
Red rectangles are sources from the DISS of INGV. View from SE to NW

The map to the right shows the
very patchy Coulomb stress
distribution in the depth range
0:25 km computed using the
Okada model and fault plane
solutions of events of m>6
occurred from 1315 to 2016,
according to CPTI15 and DISS

Volumes where the Coulomb
stress is highest should correlate
with microseismicity
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Conclusions

* Coulomb loading rate on ISS’s has been mapped with an accuracy
better than 1 kPa/yr

* Highest loading rates found on ITIS094 Tocco da Casauria, ca 5 kPa/yr
* Lower rates in Friuli

* High/low loading rate does not necessarily mean high/low seismic
hazard

* Stress transfer of individual earthquakes and regional stress generate
comparable loads on faults

* It is conceivable to map crustal stress summing the two contributions



Coseismic displacement (daily solutions):
vertical (left), horizontal (right)
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Analysis in a semi infinite elastic half space
(Okada)
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Using GNSS data to discriminate

among several seismological solutions

* Observed displacements by GNSS are very sensitive to
epicentral coordinates and fault orientation

* Several seismic analysis centers publish epicentral
coordinates and fault parameters based on the arrival times
of P and S waves at a network of seismic stations
(infrastructure similar to EPN!)

*These seismic solutions can be used to generate predictions
of surface displacements in 3D of the nearest GNSS sites, to
be compared with the measured displacements (within ca.
40 km, for m,=6.2 : 6.5)

*We have tested GFZ, QuickCMT (Harvard) and INGV, and
concluded that the latter is slightly better than the others
*This analysis is an example of synergy between
infrastructures using different technologies to monitor
seismic events

Hor/Ver displacement of GNSS stations as a
function of their distance from epicenter: GNSS
observed vs. seismic model
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Expected vertical
displacement, for

comparison with
INSAR data
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Conclusions

» Analysis of the long term stress field based on GNSS data indicates that the
epicentral area is subject to a non zero extensional stress rate, but lower
than e.g. in Tocco da Casauria: regional stress may not be a unique
indicator of hazard

e Optimal alignment of the GNSS inferred extensional eigenvector to major
structures

* GNSS provides an extremely quick response in terms of accurate coseismic
displacements

 Surface data are most sensitive to hypocenter location than to angles,
tessellated in plane displacements

e Ready for inclusion of InSAR data



